The Submodule-Based Zero-Divisor Graph with Respect to Some Homomorphism
نویسندگان
چکیده
Let M be an R-module and 0 6= f ∈ M∗ = Hom(M, R). The graph Γf (M) is a graph with vertices Z f (M) = {x ∈ M \ {0} | xf(y) = 0 or yf(x) = 0 for some non-zero y ∈ M}, in which non-zero elements x and y are adjacent provided that xf(y) = 0 or yf(x) = 0, which introduced and studied in [3]. In this paper we associate an undirected submodule based graph ΓfN (M) for each submodule N of M with vertices Z N (M) = {x ∈ M \ N | xf(y) ∈ N or yf(x) ∈ N for some y ∈ M \N}, in which non-zero elements x and y are adjacent provided that xf(y) ∈ N or yf(x) ∈ N . We observe that over a commutative ring R, ΓfN (M) is connected and diam(Γ f N (M)) 6 3. Also we get some results about clique number and connectivity number of ΓfN (M) AMS Subject Classification: 05C25; 05C38; 05C40; 16D10; 16D4
منابع مشابه
A Submodule-Based Zero Divisors Graph for Modules
Let $R$ be commutative ring with identity and $M$ be an $R$-module. The zero divisor graph of $M$ is denoted $Gamma{(M)}$. In this study, we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M, N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$. The main objective of this pa...
متن کاملProperties of extended ideal based zero divisor graph of a commutative ring
This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.
متن کاملA module theoretic approach to zero-divisor graph with respect to (first) dual
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
متن کاملINDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کامل